Tight Semi-nonnegative Matrix Factorization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Semi-Nonnegative Matrix Factorization

The nonnegative matrix factorization is a widely used, flexible matrix decomposition, finding applications in biology, image and signal processing and information retrieval, among other areas. Here we present a related matrix factorization. A multi-objective optimization problem finds conical combinations of templates that approximate a given data matrix. The templates are chosen so that as far...

متن کامل

Exact and Heuristic Algorithms for Semi-Nonnegative Matrix Factorization

Given a matrix M (not necessarily nonnegative) and a factorization rank r, semi-nonnegative matrix factorization (semi-NMF) looks for a matrix U with r columns and a nonnegative matrix V with r rows such that UV is the best possible approximation of M according to some metric. In this paper, we study the properties of semi-NMF from which we develop exact and heuristic algorithms. Our contributi...

متن کامل

Semi-Nonnegative Matrix Factorization for Motion Segmentation with Missing Data

Motion segmentation is an old problem that is receiving renewed interest because of its role in video analysis. In this paper, we present a Semi-Nonnegative Matrix Factorization (SNMF)method that models dense point tracks in terms of their optical flow, and decomposes sets of point tracks into semantically meaningful motion components. We show that this formulation of SNMF with missing values o...

متن کامل

Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction

We show how to incorporate information from labeled examples into nonnegative matrix factorization (NMF), a popular unsupervised learning algorithm for dimensionality reduction. In addition to mapping the data into a space of lower dimensionality, our approach aims to preserve the nonnegative components of the data that are important for classification. We identify these components from the sup...

متن کامل

Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition

Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition and Image Analysis

سال: 2020

ISSN: 1054-6618,1555-6212

DOI: 10.1134/s1054661820040124